176 research outputs found

    Local and global limits on visual processing in schizophrenia.

    Get PDF
    Schizophrenia has been linked to impaired performance on a range of visual processing tasks (e.g. detection of coherent motion and contour detection). It has been proposed that this is due to a general inability to integrate visual information at a global level. To test this theory, we assessed the performance of people with schizophrenia on a battery of tasks designed to probe voluntary averaging in different visual domains. Twenty-three outpatients with schizophrenia (mean age: 40±8 years; 3 female) and 20 age-matched control participants (mean age 39±9 years; 3 female) performed a motion coherence task and three equivalent noise (averaging) tasks, the latter allowing independent quantification of local and global limits on visual processing of motion, orientation and size. All performance measures were indistinguishable between the two groups (ps>0.05, one-way ANCOVAs), with one exception: participants with schizophrenia pooled fewer estimates of local orientation than controls when estimating average orientation (p = 0.01, one-way ANCOVA). These data do not support the notion of a generalised visual integration deficit in schizophrenia. Instead, they suggest that distinct visual dimensions are differentially affected in schizophrenia, with a specific impairment in the integration of visual orientation information

    Adaptable history biases in human perceptual decisions

    Get PDF
    When making choices under conditions of perceptual uncertainty, past experience can play a vital role. However, it can also lead to biases that worsen decisions. Consistent with previous observations, we found that human choices are influenced by the success or failure of past choices even in a standard two-alternative detection task, where choice history is irrelevant. The typical bias was one that made the subject switch choices after a failure. These choice history biases led to poorer performance and were similar for observers in different countries. They were well captured by a simple logistic regression model that had been previously applied to describe psychophysical performance in mice. Such irrational biases seem at odds with the principles of reinforcement learning, which would predict exquisite adaptability to choice history. We therefore asked whether subjects could adapt their irrational biases following changes in trial order statistics. Adaptability was strong in the direction that confirmed a subject's default biases, but weaker in the opposite direction, so that existing biases could not be eradicated. We conclude that humans can adapt choice history biases, but cannot easily overcome existing biases even if irrational in the current context: adaptation is more sensitive to confirmatory than contradictory statistics

    Visual population receptive fields in people with schizophrenia have reduced inhibitory surrounds

    Get PDF
    People with schizophrenia (SZ) experience abnormal visual perception on a range of visual tasks, which have been linked to abnormal synaptic transmission and an imbalance between cortical excitation and inhibition. However differences in the underlying architecture of visual cortex neurons, which might explain these visual anomalies, have yet to be reported in vivo. Here, we probe the neural basis of these deficits by using functional MRI (fMRI) and population receptive field (pRF) mapping to infer properties of visually responsive neurons in people with SZ. We employed a Difference-of-Gaussian (DoG) model to capture the centre-surround configuration of the pRF, providing critical information about the spatial scale of the pRFs inhibitory surround. Our analysis reveals that SZ is associated with reduced pRF size in early retinotopic visual cortex as well as a reduction in size and depth of the inhibitory surround in V1, V2 and V4. We consider how reduced inhibition might explain the diverse range of visual deficits reported in SZ. SIGNIFICANCE STATEMENT: People with schizophrenia (SZ) experience abnormal perception on a range of visual tasks, which has been linked to abnormal synaptic transmission and an imbalance between cortical excitation/inhibition. However associated differences in the underlying architecture of visual cortex neurons have yet to be reported in vivo. We used fMRI and population receptive field (pRF) mapping to demonstrate that the fine-grained functional architecture of visual cortex in people with SZ differs from unaffected controls. SZ is associated with reduced pRF size in early retinotopic visual cortex, largely due to reduced inhibitory surrounds. An imbalance between cortical excitation and inhibition could drive such a change in the centre-surround pRF configuration, and ultimately explain the range of visual deficits experienced in SZ

    Binocular Therapy for Childhood Amblyopia Improves Vision Without Breaking Interocular Suppression

    Get PDF
    PURPOSE: Amblyopia is a common developmental visual impairment characterized by a substantial difference in acuity between the two eyes. Current monocular treatments, which promote use of the affected eye by occluding or blurring the fellow eye, improve acuity, but are hindered by poor compliance. Recently developed binocular treatments can produce rapid gains in visual function, thought to be as a result of reduced interocular suppression. We set out to develop an effective home-based binocular treatment system for amblyopia that would engage high levels of compliance but that would also allow us to assess the role of suppression in children's response to binocular treatment. METHODS: Balanced binocular viewing therapy (BBV) involves daily viewing of dichoptic movies (with “visibility” matched across the two eyes) and gameplay (to monitor compliance and suppression). Twenty-two children (3–11 years) with anisometropic (n = 7; group 1) and strabismic or combined mechanism amblyopia (group 2; n = 6 and 9, respectively) completed the study. Groups 1 and 2 were treated for a maximum of 8 or 24 weeks, respectively. RESULTS: The treatment elicited high levels of compliance (on average, 89.4% ± 24.2% of daily dose in 68.23% ± 12.2% of days on treatment) and led to a mean improvement in acuity of 0.27 logMAR (SD 0.22) for the amblyopic eye. Importantly, acuity gains were not correlated with a reduction in suppression. CONCLUSIONS: BBV is a binocular treatment for amblyopia that can be self-administered at home (with remote monitoring), producing rapid and substantial benefits that cannot be solely mediated by a reduction in interocular suppression

    Sensitivity to numerosity is not a unique visuospatial psychophysical predictor of mathematical ability

    Get PDF
    Sensitivity to visual numerosity has previously been shown to predict human mathematical performance. However, it is not clear whether it is discrimination of numerosity per se that is predictive of mathematics, or whether the association is driven by more general task demands. To test this notion we had over 300 participants (ranging in age from 6 to 73years) perform a symbolic mathematics test and 4 different visuospatial matching tasks. The visual tasks involved matching 2 clusters of Gabor elements for their numerosity, density, size or orientation by a method of adjustment. Partial correlation and regression analyses showed that sensitivity to visual numerosity, sensitivity to visual orientation and mathematical education level predict a significant proportion of shared as well as unique variance in mathematics scores. These findings suggest that sensitivity to visual numerosity is not a unique visual psychophysical predictor of mathematical ability. Instead, the data are consistent with mathematics representing a multi-factorial process that shares resources with a number of visuospatial tasks

    A common visual metric for approximate number and density.

    Get PDF
    There is considerable interest in how humans estimate the number of objects in a scene in the context of an extensive literature on how we estimate the density (i.e., spacing) of objects. Here, we show that our sense of number and our sense of density are intertwined. Presented with two patches, observers found it more difficult to spot differences in either density or numerosity when those patches were mismatched in overall size, and their errors were consistent with larger patches appearing both denser and more numerous. We propose that density is estimated using the relative response of mechanisms tuned to low and high spatial frequencies (SFs), because energy at high SFs is largely determined by the number of objects, whereas low SF energy depends more on the area occupied by elements. This measure is biased by overall stimulus size in the same way as human observers, and by estimating number using the same measure scaled by relative stimulus size, we can explain all of our results. This model is a simple, biologically plausible common metric for perceptual number and density

    Enhanced integration of motion information in children with autism.

    Get PDF
    To judge the overall direction of a shoal of fish or a crowd of people, observers must integrate motion signals across space and time. The limits on our ability to pool motion have largely been established using the motion coherence paradigm, in which observers report the direction of coherently moving dots amid randomly moving noise dots. Poor performance by autistic individuals on this task has widely been interpreted as evidence of disrupted integrative processes. Critically, however, motion coherence thresholds are not necessarily limited only by pooling. They could also be limited by imprecision in estimating the direction of individual elements or by difficulties segregating signal from noise. Here, 33 children with autism 6-13 years of age and 33 age- and ability-matched typical children performed a more robust task reporting mean dot direction both in the presence and the absence of directional variability alongside a standard motion coherence task. Children with autism were just as sensitive to directional differences as typical children when all elements moved in the same direction (no variability). However, remarkably, children with autism were more sensitive to the average direction in the presence of directional variability, providing the first evidence of enhanced motion integration in autism. Despite this improved averaging ability, children with autism performed comparably to typical children in the motion coherence task, suggesting that their motion coherence thresholds may be limited by reduced segregation of signal from noise. Although potentially advantageous under some conditions, increased integration may lead to feelings of "sensory overload" in children with autism

    A Data Driven Approach to Audiovisual Speech Mapping

    Get PDF
    The concept of using visual information as part of audio speech processing has been of significant recent interest. This paper presents a data driven approach that considers estimating audio speech acoustics using only temporal visual information without considering linguistic features such as phonemes and visemes. Audio (log filterbank) and visual (2D-DCT) features are extracted, and various configurations of MLP and datasets are used to identify optimal results, showing that given a sequence of prior visual frames an equivalent reasonably accurate audio frame estimation can be mapped

    Reduced crowding and poor contour detection in schizophrenia are consistent with weak surround inhibition

    Get PDF
    Detection of visual contours (strings of small oriented elements) is markedly poor in schizophrenia. This has previously been attributed to an inability to group local information across space into a global percept. Here, we show that this failure actually originates from a combination of poor encoding of local orientation and abnormal processing of visual context
    • …
    corecore